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Abstract

This study investigates a combined optimal financing, reinsurance and dividend distribution problem for a big insurance portfolio.
A manager can control the surplus by buying proportional reinsurance, paying dividends and raising money dynamically. The
transaction costs and liquidation values at bankruptcy are included in the risk model. Under the objective of maximising the
insurance company’s value, we identify the insurer’s joint optimal strategies using stochastic control methods. The results reveal
that managers should consider financing if and only if the terminal value and the transaction costs are not too high, less reinsurance
is bought when the surplus increases or dividends are always distributed using the barrier strategy.
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1. Introduction

In the actuarial and mathematical insurance literature, the classical dividend problem consists of finding
the dividend distribution policy that maximises the expected total discounted dividend payments until the time
of bankruptcy. However, more complicated models involve controlling both the risk-related activities and the
dividend distribution. This approach becomes particularly important when modelling the behaviour of a large
insurance company. Frequently, in addition to the distribution of part of the surplus as dividends, an insurance
company’s manager faces the problem of how much risk must be ceded by purchasing reinsurance. Reinsurance
refers to controlling revenues by diverting a portion of premiums to a reinsurer to reduce the insurer’s risk, which
also reduces the insurer’s potential profit. A reinsurance contract is said to be “cheap” if the cedent pays the
same fraction of the premium as the reinsured. In a “non-cheap” reinsurance contract, the cedent pays a larger
fraction of the premium than the fraction to be reinsured. The excess can be interpreted as the transaction
cost for a reinsurance contract. Recently, some attention has been paid to the combined optimal dividend and
reinsurance problem for risk models. As an extension of the classical dividend problem, it assumes that the
manager of an insurance company can control the dividend stream and risk exposure in terms of reinsurance.
Proportional and excess-of-loss reinsurance have received increasing attention from academics and practitioners.
The literature on the combined optimisation of dividend distribution and proportional reinsurance includes
Taksar and Zhou (1998), Hφgaard and Taksar (1999, 2004), Taksar (2000a), Choulli et al. (2003), Cadenillas
et al. (2006) and Chen et al. (2013). Studies on the combined optimisation of dividend distribution and
excess-of-loss reinsurance include Asmussen et al. (2000), Mnif and Sulem (2005), Bai et al. (2010), Liu and
Hu (2014) and the references therein.

When a company is on the verge of bankruptcy, it faces two choices: be bailed out through financing, or
get out of the business. A bail-out requires financing costs, such as the proportional and fixed transaction costs
generated by the advisory, consulting and issuance of securities. Leaving the business may lead to bankruptcy
and the corresponding liquidation (or terminal) value, say P . The liquidation value can be viewed as the
salvage value for P ≥ 0 and the penalty amount for P < 0. The decision to raise money or not depends on the
relationships among the model’s parameters. To maximise the company’s value, the manager must seek optimal
financing, reinsurance and dividend distribution strategies. Most of the studies in the literature deal with this
optimisation problem in the case of P = 0. The company’s value is measured by the expected discounted total
dividends minus the expected discounted costs of financing until the time of bankruptcy. For example, He
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and Liang (2009) and Barth and Moreno-Bromberg (2014) studied the dividend and financing problem with
“cheap” proportional reinsurance. Peng et al. (2012) further generalised the optimisation problem for a case of
“non-cheap” proportional reinsurance, but they assumed that the bankruptcy never occurred based on the belief
that financing would be applied when needed. Guan and Liang (2014) extended these risk models by allowing
for “non-cheap” reinsurance and considering the possibility of bankruptcy. The proportional and fixed costs
in financing and dividend distribution processes have also been considered. For more detailed discussions on
this issue, see, for example, Meng and Siu (2011), Zhou and Yuen (2012) and the references therein. Generally
speaking, non-zero liquidation better reflects reality, but it also complicates the optimisation problem. A few
studies have investigated the optimal dividend and reinsurance problem with non-zero liquidation, but without
financing. They have measured the company’s value by the sum of the expected present value of all dividends
until bankruptcy and the expected discounted liquidation value. For example, Taksar (2000b) and Xu and Zhou
(2012) studied the optimal dividend problems assuming “cheap” proportional and excess-of-loss reinsurance,
respectively, in diffusion models with a liquidation value P ≥ 0. Note that in the case of “cheap” reinsurance,
the insurer can avoid debt liability by ceding all risks. Theoretically, the insurer can keep the surplus non-
negative forever by purchasing reinsurance. It is always optimal to avoid bankruptcy for the insurer if the
liquidation value is negative. Thus, the case of P < 0 becomes trivial. Taksar and Hunderup (2007) and Yao et
al. (2014) encountered similar situations. Clearly, this conclusion does not agree with the practice. Sometimes,
negative liquidation value is unavoidable, which drives the exploration of the problem under the assumptions
of “non-cheap” proportional reinsurance and arbitrary liquidation value. To the best of our knowledge, Liang
and Young (2012) first investigated this problem with arbitrary liquidation value P ∈ R when one controls both
the dividend distribution and the “non-cheap” proportional reinsurance. Optimal dividend and reinsurance
strategies were obtained using the Legendre transform. They did not consider financing and transaction costs.
Yao et al. (2014) first focused on the combined optimisation problem of financing, reinsurance and dividend
distribution with positive liquidation value. They assumed that the premium was calculated via the variance
principle, and thus analysed the effects of proportional and fixed transaction costs. With the exception of Yao et
al. (2014), very little work has considered the combined optimal financing, dividend and reinsurance strategies
with non-zero liquidation value.

Motivated by the above references, in this study we examine an optimal financing, dividend and “non-
cheap” reinsurance problem with arbitrary liquidation value. We include transaction costs in our risk model.
Our objective is to find the optimal management strategies for maximising company value, which is measured
by a new reasonable performance function. We extend the risk model in Liang and Young (2012) by taking
financing and transaction costs into account and using techniques beyond the Legendre transform to solve the
problem. Then, we provide explicit solutions for the value function and the optimal strategy in 14 different
cases and analyse the influence of transaction costs and liquidation value P ∈ R. The remainder of this paper
is organised as follows. In Section 2, we use a diffusion approximation of the Cramér-Lundberg model with
reinsurance to formulate the optimisation problem for a controlled diffusion model with dividend, financing and
“non-cheap” reinsurance policies. In Section 3, the Hamilton-Jacobi-Bellman (HJB) equations associated with
the optimisation problem are given and some of the properties of the value function are discussed. Based on
the costs of reinsurance, as measured by the safety loading, we address the solutions to the value function and
associated optimal strategy in Sections 4 and 5, respectively. Section 6 concludes the study.

2. Model formulation and the optimal control problem

We start with the classical Cramér-Lundberg risk model. In this model, claims arrive according to a Poisson
process Nt with a rate of λ and the size of the ith claim is Yi, where Yi’s are independent and identically
distributed. Assume that the mean µ1 = E(Y1) and the second moment µ2 = E(Y 2

1 ) are finite. The risk process
representing the company’s surplus evolves according to

Ut = x + ct −
Nt
∑

i=1

Yi, (2.1)

where U0 = x ≥ 0 is the initial surplus and c > 0 is the premium rate. Under the assumption of the expected
value principle, it has

c = (1 + θ1)E
(

N1
∑

i=1

Yi

)

= (1 + θ1)λµ1, (2.2)
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where θ1 > 0 is the safety loading for the insurer. Suppose that the insurer purchases a proportional reinsurance
with a retention level of q ∈ [0, 1]. Specifically, for each claim of size Yi, the insurer covers qYi and the reinsurer
covers the rest (1−q)Yi. Suppose that the reinsurer also uses the expected premium principle, but with a larger
safety loading θ2 ∈ (θ1,∞), i.e., the reinsurance is “non-cheap”, then the premium rate for reinsurance is

cq = (1 + θ2)E
(

N1
∑

i=1

(1 − q)Yi

)

= (1 + θ2)(1 − q)λµ1. (2.3)

Then, the surplus process with reinsurance can be expressed as

U q
t = x + (c − cq)t −

Nt
∑

i=1

qYi, (2.4)

where U q
0 = x ≥ 0. Let (Ω,F , {Ft}t≥0, P) be a probability space, where {Ft}t≥0 is an information filtration,

and let {Bt}t≥0 be a standard Brownian motion adapted to Ft. According to Grandell (1991), we approximate
model (2.4) by a pure diffusion model {Xq

t }t≥0 with the same drift and volatility; that is, Xq
t satisfies the

following stochastic process

Xq
t = x + a(θ1 − (1 − q)θ2)t + bqBt, (2.5)

where Xq
0 = x, a = λµ1 and b =

√
λµ2. Such an approximation is suitable for large portfolios.

Suppose that q ∈ [0, 1] can be adjusted dynamically to control the risk exposure, then we use the process
{qt}t≥0 to describe a reinsurance strategy. In addition, we incorporate dividend distribution and financing in
model (2.5). Let Dt denote the total amount of dividends paid from time 0 to t. Let Rt =

∑∞
i=1 I{τi≤t}ηi

denote the total amount of capital raised by issuing equities from time 0 to t, where {τi, i = 1, 2, · · · } denote
the time points when the equity is issued and {ηi, i = 1, 2, · · · } denote the amounts of equity issued. When
applying strategy π = (qπ, Dπ, Rπ), the resulting surplus process is modelled by

Xπ
t = x +

∫ t

0

a(θ1 − (1 − qπ
s )θ2)ds +

∫ t

0

bqπ
s dBs − Dπ

t + Rπ
t , (2.6)

where Xπ
0 = x. The definition of an admissible strategy that can be selected by the manager is as follows.

Definition 2.1. A strategy π = (qπ, Dπ, Rπ) is said to be admissible if it satisfies the following conditions:
(i) The retention level qπ = {qπ

t }t≥0 is an Ft-adapted process with 0 ≤ qπ
t ≤ 1 for all t ≥ 0.

(ii) {Dπ
t } is an increasing, Ft-adapted càdlàg process with Dπ

0− = 0 and satisfies ∆Dπ
t = Dπ

t − Dπ
t− ≤ Xπ

t− for
all t ≥ 0.
(iii) {τπ

i } is a sequence of stopping times w.r.t. Ft and 0 ≤ τπ
1 < · · · < τπ

i < · · · , a.s..
(iv) ηπ

i ≥ 0, i = 1, 2, · · · is measurable w.r.t. Fτπ
i

.
(v) P( lim

i→∞
τπ
i < t) = 0, ∀ t > 0.

Condition (ii) means that the total amount of dividends is less than the surplus available at that time. Condi-
tion (v) implies that the issuance of equities may not occur infinitely in a finite time interval. We write Π for the
space of these admissible strategies. For each π ∈ Π, the bankruptcy time is defined as T π = inf{t ≥ 0 : Xπ

t < 0},
which is the first time that the surplus becomes negative.

Problem 2.1. We measure the company’s value associated with strategy π ∈ Π using the following per-
formance function:

V (x; π) = Ex

(

β1

∫ T π

0

e−δsdDπ
s + Pe−δT π −

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤T π}

)

, (2.7)

which is the expected sum of the discounted liquidation value and the discounted dividends less the expected
discounted costs of equity issuances until the time of bankruptcy. Ex denotes the expectation conditional on
Xπ

0 = x and δ > 0 is the discount factor. In the dividend distribution process, β1 ∈ (0, 1) is the proportional
transaction cost factor, which means that the shareholders can get β1l if the company pays l as dividends. In
the financing process, β2 > 1 is the proportional transaction cost factor and K > 0 is the fixed cost, such that
the shareholders need to pay β2η + K to meet the capital injection of η. We are interested in finding the value
function

V (x) = max
π∈Π

V (x; π) (2.8)

and the associated optimal strategy π∗, such that V (x) = V (x; π∗).

3



3. HJB equation and preliminary analysis

Suppose that v : [0,∞) 7→ R is a candidate solution for the value function. Let C denote the financing
operator defined by C v(x) = supy≥0{v(x + y) − β2y − K}, which represents the value of the strategy that
consists of choosing the best immediate equity issuance. Another notation used in this paper is the differential
operator A q, defined by A qv(x) = 1

2q2b2v′′(x) + (θ1 − (1 − q)θ2)av′(x) − δv(x).
Assume that v(x) is sufficiently smooth and regular to perform the following manipulations. Then, if the

process starts at x ≥ 0 and follows an optimal strategy, the performance function associated with this optimal
strategy is v(x). In contrast, if the process starts at x, selects the best immediate equity issuance and then
follows an optimal strategy, then the performance function associated with this second strategy is C v(x). Given
that the first strategy is optimal, its performance function is larger than that associated with the second strategy.
Furthermore, these two performance functions are equivalent when it is optimal to finance. Hence, v(x) ≥ C v(x).
In the continuation region, that is, when the manager does not intervene, we must have A qv(x) = 0. In the
dividend region, we must have v′(x) = β1. Considering the Markovian structure of the problem, as the insurance
company is on the brink of bankruptcy, the optimal strategy should either allow for the surplus process to hit
(−∞, 0) by issuing no new equity, which corresponds to the boundary condition v(0) = P and C v(0) ≤ v(0),
or keep the surplus process in the interval [0,∞), which corresponds to the boundary condition v(0) ≥ P and
C v(0) = v(0). Using stochastic control theory, see Fleming and Soner (1993), we write the HJB equations
associated with Problem 2.1 as

max
{

C v(x) − v(x), max
0≤q≤1

{A qv(x)}, β1 − v′(x)
}

= 0; (3.1)

max{C v(0) − v(0), P − v(0)} = 0. (3.2)

Theorem 3.1. Suppose that v(x) is an increasing, concave and twice continuously differentiable solution to
HJB equations (3.1) and (3.2), and that the derivative v′(x) is bounded, then v(x) ≥ V (x; π) for any admissible
strategy π ∈ Π, such that v(x) ≥ V (x). Furthermore, if there exists some strategy π∗ = (qπ∗

, Dπ∗

, Rπ∗

) ∈ Π,
such that v(x) = V (x; π∗), then v(x) = V (x) and π∗ is optimal.

Proof. See Appendix A.

The above theorem drives us to find an appropriate solution to the HJB equations and construct the asso-
ciated optimal strategy π∗. In addition, given the time value of money, it is optimal to postpone raising money
for as long as possible, i.e., issuance of equity may happen when and only when the surplus process hits the
barrier 0. The result can be established by repeating a procedure that is similar to that in Lemma 3.2 of Peng
et al. (2012). Thus, C v(x) − v(x) < 0 holds for all x > 0.

Lemma 3.1. The value function V (x) defined by (2.8) is increasing for x ≥ 0 with

β1(x − y) ≤ V (x) − V (y) ≤ β2(x − y) + K (3.3)

and satisfies the following bounded condition

β1x + P ≤ V (x) ≤ β1x + β1θ1a/δ + PI{P>0}. (3.4)

Proof. Consider an admissible strategy π1 with V (x; π1) ≥ V (x) − ε for any ε > 0. For y < x, we define a new
admissible strategy as follows. Collect x− y dollars by issuing equities immediately and then take the strategy
π1 with initial capital x. Then, for ε > 0, we have

V (y) ≥ V (x; π1) − β2(x − y) − K ≥ V (x) − ε − β2(x − y) − K.

Because ε is arbitrary, V (x) − V (y) ≤ β2(x − y) − K. The first inequality in (3.3) can be similarly proven.
We now consider another admissible strategy π2. Simultaneously distribute all of the surplus as dividends

and claim the liquidation value. Then, the corresponding performance function is V (x; π2) = β1x + P . Due to
the optimality of the value function, we have V (x) ≥ V (x; π2) = β1x + P .

Recall the surplus process Xq
t with only reinsurance in (2.5). We know

Ex

(

∫ T π

0

e−δsdXq
s

)

= Ex

(

∫ T π

0

e−δs
(

a(θ1 − (1 − q)θ2)
)

ds
)

≤ θ1a/δ.
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By Itô’s formula,

e−δT π

Xπ
T π = x − δ

∫ T π

0

e−δsXπ
s ds +

∫ T π

0

e−δsdXπ
s .

Given that Xπ
T π = 0 and Xπ

t ≥ 0, for t ≤ T π, taking the expectation on both sides yields

−Ex

(

∫ T π

0

e−δsdXπ
s

)

= x − Ex

(

δ

∫ T π

0

e−δsXπ
s ds

)

≤ x.

Then,

V (x; π) = Ex

(

β1

∫ T π

0

e−δsdDπ
s + Pe−δT π −

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤T π}

)

≤ β1Ex

(

∫ T π

0

e−δsdDπ
s −

∞
∑

n=1

e−δτπ
n ηπ

nI{τπ
n≤T π}

)

+ PI{P>0}

= β1

[

Ex

(

∫ T π

0

e−δsdXq
s

)

− Ex

(

∫ T π

0

e−δsdXπ
s

)]

+ PI{P>0}

≤ β1x + β1θ1a/δ + PI{P>0}.

Hence, the result follows.

Reinsurance can reduce the insurer’s risk and potential profit. It is understandable that the insurer should
buy less reinsurance as its cost increases, which is measured by the safety loading θ2 for the reinsurer. It is
expected that full retention will be taken once θ2 exceeds some critical level. In the following, we split the

optimisation problem into two parts according to the critical level θ1 +

√

θ2
1 + 2δ

(

b
a

)2
.

4. The case of θ2 ∈
(

θ1, θ1 +
√

θ2
1 + 2δ

(

b

a

)2)

Throughout this section, we only consider the case when the safety loading for the reinsurer satisfies

θ1 < θ2 < θ1 +

√

θ2
1 + 2δ

( b

a

)2
. (4.1)

Motivated by the innovative ideas in Lφkka and Zervos (2008), we discuss the solutions to HJB equations
according to different conditions, such that (3.2) holds. In addition, we expect the solution to be increasing,
concave and twice continuously differentiable, and for the derivative to be bounded.

4.1. The case without financing

We now consider the first case with v(0) = P and C v(0) − v(0) ≤ 0. It is optimal to declare bankruptcy
whenever the surplus is zero and financing is unprofitable. Using methodologies from stochastic control theory,
in this case the solution f(x) for v(x) should satisfy

max
0≤q≤1

{A qf(x)} = 0, 0 < x ≤ u0, (4.2)

β1 − f ′(x) = 0, x ≥ u0, (4.3)

f(0) = P, (4.4)

C f(0) − f(0) ≤ 0, (4.5)

where unknown parameters 0 ≤ u0 < ∞. In fact, (4.2)-(4.5) mean that the continuation region is [0, u0], the
dividend region is [u0,∞) and the financing region is empty. Differentiating (4.2) with respect to q and setting
the derivative equal to zero yields

q(x) =
−θ2af ′(x)

b2f ′′(x)
, if f ′′(x) 6= 0. (4.6)
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Plugging (4.6) into (4.2) yields
(1

2
θ2aq + (θ1 − θ2)a

)

f ′(x) − δf(x) = 0. (4.7)

Note that q is a function of x. By taking the derivative with respect to x on both sides of (4.7) and using (4.6)
again, we find

q′(x) =
(2δb2 + a2θ2

2)q(x) − 2θ2(θ2 − θ1)a
2

θ2ab2q(x)
. (4.8)

To proceed with the analysis, we define an increasing linear function on [0,∞)

φ(x) := (2δb2 + a2θ2
2)x − 2θ2(θ2 − θ1)a

2. (4.9)

Under condition (4.1), there is a unique solution

ρ =
2θ2(θ2 − θ1)a

2

2δb2 + a2θ2
2

∈ (0, 1) (4.10)

where φ(ρ) = 0. Clearly, φ(x) > 0 for all x ∈ (ρ,∞). Assuming that q(0) := q0 ∈ (ρ, 1], we define another
function of x ∈ [q0, 1] as

Q(x) =

∫ x

q0

θ2ab2y

(2δb2 + a2θ2
2)y − 2θ2(θ2 − θ1)a2

dy.

Due to the positivity of the integrand, Q(x) is strictly increasing and Q(1) < ∞. Consequently, the inverse
Q−1(x) of the function Q(x) exists on [0, x0] with x0 = Q(1). We conjecture that the switch level for reinsurance
x0 is smaller than that for dividend u0. Together with the condition Q(q0) = 0, we have

q(x) = Q−1(x), 0 ≤ x ≤ x0. (4.11)

Given (4.4) and (4.6), we can express f(x) through q(x) by

f(x) = k3

∫ x

0

e
∫

x0
y

θ2a

b2q(z)
dz

dy + P, (4.12)

where k3 > 0 needs to be determined.
Regarding the continuity of retention level, we conjecture that the insurer will take all risks when the surplus

exceeds x0; that is, q(x) ≡ 1 for x ∈ [x0, u0]. Then, (4.2) becomes a second-order ordinary differential equation

1

2
b2f ′′(x) + θ1af ′(x) − δf(x) = 0. (4.13)

Its solution is of the form

f(x) = k1e
r+(x−x0) + k2e

r−(x−x0), (4.14)

with undetermined coefficients k1 and k2 and

r+ =
a

b2

(

− θ1 +

√

θ2
1 + 2δ

( b

a

)2
)

> 0, (4.15)

r− =
a

b2

(

− θ1 −
√

θ2
1 + 2δ

( b

a

)2
)

< 0. (4.16)

Finally, combining (4.3) with the continuity of f(x) yields

f(x) = β1(x − u0) + f(u0), x ≥ u0. (4.17)

By setting the left first and second derivatives to equal the right first and second derivatives of f(x) at x0 and
u0, we obtain

k1r+ + k2r− = k3, (4.18)

k1(r+)2 + k2(r−)2 = −θ2a

b2
k3, (4.19)

k1r+er+(u0−x0) + k2r−er−(u0−x0) = β1, (4.20)

k1(r+)2er+(u0−x0) + k2(r−)2er−(u0−x0) = 0. (4.21)
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Solving (4.18) and (4.19) leads to

k1 = k3c1, k2 = k3c2 (4.22)

where

c1 =
r− + θ2a

b2

r+(r− − r+)
> 0, (4.23)

c2 =
r+ + θ2a

b2

r−(r+ − r−)
< 0. (4.24)

Here, the inequality c1 > 0 is valid due to (4.1), and c2 < 0 is obvious. Substituting (4.22) into (4.21) yields

u0 = x0 +
1

r+ − r−
ln

(b2 + θ2a
r+

b2 + θ2a
r−

)

> x0, (4.25)

where the inequality holds because b2 + θ2a
r+

> b2 + θ2a
r−

> 0 in the case of (4.1). Using (4.22) and (4.25), to solve

(4.20) we have

k3 =
β1b

2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

)

−r
−

r+−r
−

> 0. (4.26)

Lemma 4.1. β1 < k3 < β1b2

b2+
θ2a

r
−

and lim
θ2→− b2

a
r−

k3 = ∞.

Proof. To prove the left side of the inequality, we take the log of k3. Due to the concavity of the log function,
we obtain

log k3 = log β1 + log b2 −
[ r+

r+ − r−
log

(

b2 +
θ2a

r+

)

− r−
r+ − r−

log
(

b2 +
θ2a

r−

)]

> log β1 + log b2 − log
[ r+

r+ − r−

(

b2 +
θ2a

r+

)

− r−
r+ − r−

(

b2 +
θ2a

r−

)]

= log β1 + log b2 − log b2 = log β1, (4.27)

which implies k3 > β1. However, together with the following inequalities

b2 +
θ2a

r+
> b2 +

θ2a

r−
> 1, 0 <

−r−
r+ − r−

< 1,

we derive that

k3 =
β1b

2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

)

−r
−

r+−r
−

<
β1b

2

b2 + θ2a
r+

·
b2 + θ2a

r+

b2 + θ2a
r−

=
β1b

2

b2 + θ2a
r−

. (4.28)

The inequality is confirmed. It is interesting to note that (4.1) can be re-expressed as θ1 < θ2 < − b2

a r−. It is
also easy to see that

d

dθ2
log k3 =

−a2θ2

(b2r+ + θ2a)(b2r− + θ2a)
> 0.

Thus, k3 := k3(θ2) is an increasing function on (θ1,− b2

a r−) and lim
θ2→− b2

a
r−

k3 = ∞.

Thus far we obtain an increasing, concave and twice continuously differentiable solution to (4.2)-(4.4) as

f(x) =











β1(x − u0) + f(u0), x ≥ u0,

k1e
r+(x−x0) + k2e

r−(x−x0), x0 ≤ x ≤ u0,

k3

∫ x

0
e

∫

x0
y

θ2a

b2q(z)
dz

dy + P, 0 ≤ x ≤ x0,

(4.29)
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and an associated candidate optimal reinsurance policy characterised by

qπ∗

(x) =

{

1, x ≥ x0,

Q−1(x), 0 ≤ x ≤ x0.
(4.30)

In what follows, we determine q0, x0 and u0. From (4.7), we have

k3(
1

2
θ2aq0 + θ1a − θ2a)e

∫ x0
0

θ2a

b2q(z)
dz

= δP. (4.31)

By applying a variable change of y = q(z) and combining it with (4.8), we arrive at

P =
k3

δ
Φ(q0), ρ < q0 ≤ 1, (4.32)

where Φ(x) := (1
2θ2ax + θ1a − θ2a)e

∫ 1
x

a2θ2
2

φ(y)
dy. Recalling φ(x) > 0 for x ∈ (ρ, 1], we know that Φ(x) is strictly

increasing on (ρ, 1], as Φ′(x) = aδθ2b2x
φ(x) e

∫

1
x

a2θ2
2

φ(y)
dy > 0. So the maximum is Φ(1) = a(θ1− 1

2θ2). In addition, we can

rewrite
a2θ2

2

φ(y) := γ
y−ρ with γ =

a2θ2
2

2δb2+a2θ2
2

> 0. According to 1
2θ2aρ+θ1a−θ2a < 0 and lim

x→ρ+

∫ 1

x
γ

y−ρdy = +∞, one

has lim
x→ρ+

Φ(x) = −∞. Based on the above analysis, we conclude that (4.32) has a unique root q0 = q(0) ∈ (ρ, 1)

if and only if the inequality

P <
k3a

δ
(θ1 −

1

2
θ2) (4.33)

is valid. Consequently, the values of x0 = Q(1) and u0 in (4.25) are also obtained.

Next, we define

I(ξ) :=

∫ ξ

0

(f ′(x) − β2)dx = f(ξ) − f(0) − β2ξ, (4.34)

where f(x) is of the form (4.29). Note that I(ξ) is decreasing with respect to β2. We confirm that f(x) in (4.29)
satisfies (4.5), according to the following cases.

(1) In the case of β1 < f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz ≤ β2, we have f ′(x) ≤ β2 for all x ≥ 0, as f ′(x) is decreasing on

[0,∞). Thus, C f(0)− f(0) = maxy≥0{f(y)− β2y −K}− f(0) = −K < 0, (4.5) is established. Figure 1(a) is a
graph of f ′(x) in this case.

(2) In the case of f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3, f ′(x) is strictly decreasing from f ′(0) to f ′(u0) = β1

and f ′(x0) = k3. Then, there exists a unique number ξ∗1 ∈ (0, x0), such that f ′(ξ∗1 ) = β2. (4.5) holds if and only
if

K ≥ I(ξ∗1), (4.35)

where I(ξ) is defined in (4.34). Figure 1(b) provides a graph of f ′(x) in this case.

(3) In the case of f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2, for the same reason as above, there exists a unique
number ξ∗2 ∈ (x0, u0), such that f ′(ξ∗2 ) = β2. Define the integral

J(ξ∗2 ) :=

∫ ξ∗

2

x0

(f ′(x) − β2)dx = f(ξ∗2) − f(x0) − β2(ξ
∗
2 − x0), (4.36)

where f(x) is of the form (4.29). J(ξ∗2 ) is also decreasing with respect to β2. (4.5) holds if and only if

K ≥ I(ξ∗2). (4.37)

Again, where I(ξ) is defined in (4.34). Figure 1(c) is a graph of f ′(x) in this case. Eq. (4.36) is used later.

Considering the opposite of (4.33), for

P ≥ k3a

δ
(θ1 −

1

2
θ2), (4.38)
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Figure 1: The graph of the derivative v′(x) = f ′(x) without financing

(a) P < k3a
δ

(θ1 − 1

2
θ2), β1 < f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

≤ β2;

(b) P <
k3a

δ
(θ1 −

1

2
θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3, K ≥ I(ξ∗1 );

(c) P <
k3a

δ
(θ1 − 1

2
θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2, K ≥ I(ξ∗
2
);

(d) k3a

δ
(θ1 − 1

2
θ2) ≤ P <

β1θ1a

δ
, f ′(0) = k1r+ + k2r− ≤ β2;

(e)k3a
δ

(θ1 − 1

2
θ2) ≤ P < β1θ1a

δ
, f ′(0) = k1r+ + k2r− > β2, K ≥ I(ξ∗

3
);

(f) P ≥
β1θ1a

δ
.

(4.32) has no solution on (ρ, 1). We set q(x) ≡ 1, i.e., the insurer does not use reinsurance at all. An intuitive
interpretation is that the insurer is willing to take all risks if the “salvage value” is large enough. A suggested
solution to (4.2)-(4.4) is of the form

f(x) =

{

β1(x − u0) + f(u0), x ≥ u0,

k1e
r+x + k2e

r−x, 0 ≤ x ≤ u0,
(4.39)

with some u0 > 0. The principle of smooth fit at u0 results in

k1 =
β1r−

r+(r− − r+)
e−r+u0 > 0, (4.40)

k2 =
β1r+

r−(r+ − r−)
e−r−u0 < 0. (4.41)

The switching level u0 can be determined by boundary condition (4.4); specifically,

β1r−
r+(r− − r+)

e−r+u0 +
β1r+

r−(r+ − r−)
e−r−u0 = P. (4.42)

To prove the existence of u0, we consider the following function

w(x) :=
β1r−

r+(r− − r+)
e−r+x +

β1r+

r−(r+ − r−)
e−r−x,

for x ≥ 0. It is easy to see that w(0) = β1(r++r−)
r+r−

= β1θ1a
δ > 0, w′(x) < 0 and w(∞) = −∞, which imply that

w(x) is strictly decreasing from β1θ1a
δ to −∞. Thus, under the condition of

k3a

δ
(θ1 −

1

2
θ2) ≤ P <

β1θ1a

δ
, (4.43)
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(4.42) has a unique solution u0 ∈
(

0, 1
r+−r−

ln
( b2+θ2a/r+

b2+θ2a/r−

)]

, which is a decreasing function of P . The above

inequality suggests that

k3a

δ
(θ1 −

1

2
θ2) <

β1θ1a

δ
. (4.44)

Recall the expression of k3. We rewrite inequality (4.44) as

b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

)

−r
−

r+−r
−

(θ1 −
1

2
θ2) < θ1. (4.45)

The proof of (4.45) can be found in Appendix B. Then, we check inequality (4.5) when f(x) is of the form (4.39).

(1) In the case of f ′(0) = k1r+ + k2r− = β1r−

r−−r+
e−r+u0 + β1r+

r+−r−

e−r−u0 ≤ β2, it has f ′(x) ≤ β2 for all x ≥ 0,

as f ′(x) is decreasing on [0,∞). Hence, C f(0) − f(0) = maxy≥0{f(y) − β2y − K} − f(0) = −K < 0 and (4.5)
follows. Figure 1(d) is a graph of f ′(x) in this case.

(2) In the case of f ′(0) = k1r+ + k2r− = β1r−

r−−r+
e−r+u0 + β1r+

r+−r−

e−r−u0 > β2, f ′(x) is strictly decreasing

from f ′(0) to f ′(u0) = β1. Then, there exists a unique number ξ∗3 ∈ (0, u0), such that f ′(ξ∗3 ) = β2. Apparently,
(4.5) holds if and only if

K ≥ I(ξ∗3), (4.46)

where I(ξ) is defined by (4.34) with f(x) in (4.39). Figure 1(e) is a graph of f ′(x) in this case.

Finally, we are in the position to consider the last case

P ≥ β1θ1a

δ
. (4.47)

Then, (4.42) has no positive solution. In this case, we set u0 = 0, which means that the insurer pays all of
the current surplus as dividends and claims the liquidation value immediately. The corresponding performance
function is

f(x) = β1x + P, x ≥ 0, (4.48)

which is indeed a solution to (4.2)-(4.5), and the proof is omitted. Figure 1(f) is a graph of f ′(x) in this case.

Remark 4.1. Consider the special case P = 0, as in Taksar (2000a). If θ1 < θ2 ≤ 2θ1, then (4.32) has
a unique solution q0 = 2(θ2 − θ1)/θ2 ∈ (ρ, 1] and the value function takes the form of (4.29). However, for
2θ1 < θ2, there is no solution to (4.32) on the interval (ρ, 1] because 2(θ2 − θ1)/θ2 > 1. The value function
coincides with f(x) in (4.39) because condition (4.43) holds. These results are consistent with those in Theorem
6.1 of Taksar (2000a).

4.2. The case without bankruptcy

The analysis above proves that no appropriate solution satisfies (4.2)-(4.5) simultaneously when (4.35), (4.37)
or (4.46) fails. In other words, it is no longer optimal to withdraw from the market when the surplus is null.
We now consider the second case with v(0) ≥ P and C v(0) − v(0) = 0; that is, the manager should raise an
appropriate amount of capital to prevent bankruptcy. Then, the solution f(x) for v(x) should satisfy

max
0≤q≤1

{A qf(x)} = 0, 0 < x ≤ ũ0, (4.49)

β1 − f ′(x) = 0, x ≥ ũ0, (4.50)

f(0) ≥ P, (4.51)

C f(0) − f(0) = 0, (4.52)

with some parameter ũ0 ≥ 0. In fact, (4.49)-(4.52) establish that the continuation region is (0, ũ0], the dividend
region is (ũ0,∞) and the financing region is {0}. In what follows, we solve (4.49)-(4.52) when (4.35), (4.37) or
(4.46) fails. There are four cases to be discussed.
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(1) If P < k3a
δ (θ1 − 1

2θ2), f
′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ∗1 ) hold, let x0 = Q(1) and u0, f(x) and

qπ∗

(x) be given in (4.25), (4.29) and (4.30), respectively. We give a candidate solution f1(x) = f(x + p∗1) with
some parameter p∗1 > 0, i.e.,

f1(x) =











β1(x − u1) + f1(u1), x ≥ u1,

k1e
r+(x−x1) + k2e

r−(x−x1), x1 ≤ x ≤ u1,

k3

∫ x+p∗

1

0 e
∫

x0
y

θ2a

b2q(z)
dz

dy + P, 0 ≤ x ≤ x1,

(4.53)

where x1 = x0 − p∗1 > 0 and u1 = u0 − p∗1 > 0. Given (4.6), we define the candidate optimal reinsurance policy
as qπ∗

1 (x) = qπ∗

(x + p∗1), i.e.,

qπ∗

1 (x) =

{

1, x ≥ x1,

Q−1(x + p∗1), 0 ≤ x ≤ x1.
(4.54)

It is easy to see that f1(x) and qπ∗

1 (x) satisfy (4.49)-(4.51) with ũ0 = u1, as they can be obtained by shifting
f(x) and qπ∗

(x) to the left p∗1 units, respectively. A graph of v′(x) = f ′
1(x) can be found in Figure 2(a). Now

we need to determine the value of p∗1 > 0, such that (4.52) holds. Define a function of p, ϕ(p) = ϕ(p; ξ), as

ϕ(p) = ϕ(p; ξ) := f(ξ) − f(p) − β2(ξ − p) − K, 0 ≤ p ≤ ξ. (4.55)

The condition K < I(ξ∗1) leads to

ϕ(0; ξ∗1) = f(ξ∗1) − f(0) − β2ξ
∗
1 − K = I(ξ∗1 ) − K > 0. (4.56)

In addition, we have

ϕ(ξ∗1 ; ξ∗1 ) = −K < 0,

ϕ′(p; ξ∗1) = β2 − f ′(p) < 0.

Thus, there exists a unique solution p∗1 ∈ (0, ξ∗1) that satisfies ϕ(p∗1; ξ
∗
1 ) = 0 or, equivalently,

f1(η
∗
1) − f1(0) − β2η

∗
1 − K = 0,

where η∗
1 := ξ∗1 − p∗1 > 0. Noting that f ′

1(η
∗
1) = f ′(ξ∗1 ) = β2, then (4.52) comes from

C f1(0) = max
y≥0

{f1(y) − β2y − K} = f1(η
∗
1) − β2η

∗
1 − K = f1(0). (4.57)

Similarly, we can present the solutions to (4.49)-(4.52) in other cases, but we omit the details here.

(2) If P < k3a
δ (θ1− 1

2θ2), f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and J(ξ∗2 ) < K < I(ξ∗2 ) hold, let u0, f(x) and qπ∗

(x)
be given by (4.25), (4.29) and (4.30), respectively. Define a candidate solution f2(x) = f(x + p∗2)

f2(x) =











β1(x − u2) + f2(u2), x ≥ u2,

k1e
r+(x−x2) + k2e

r−(x−x2), x2 ≤ x ≤ u2,

k3

∫ x+p∗

2

0 e
∫

x0
y

θ2a

b2q(z)
dz

dy + P, 0 ≤ x ≤ x2,

(4.58)

where x2 = x0 −p∗2 > 0, u2 = u0−p∗2 > 0 and p∗2 ∈ (0, x0) is the unique solution to ϕ(p; ξ∗2) = 0 or, equivalently,

f2(η
∗
2) − f2(0) − β2η

∗
2 − K = 0, (4.59)

where η∗
2 := ξ∗2 − p∗2 > 0. Accordingly, define a candidate optimal reinsurance policy qπ∗

2 (x) = qπ∗

(x + p∗2)

qπ∗

2 (x) =

{

1, x ≥ x2,

Q−1(x + p∗2), 0 ≤ x < x2.
(4.60)

Then, f2(x) and qπ∗

2 (x) satisfy (4.49)-(4.52) with ũ0 = u2. Figure 2(b) is a graph of v′(x) = f ′
2(x) in this case.

11



(3) If P < k3a
δ (θ1 − 1

2θ2), f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤ J(ξ∗2 ) < I(ξ∗2 ) hold, let u0, f(x) and

qπ∗

(x) be given by (4.25), (4.29) and (4.30), respectively. Define a candidate solution f3(x) = f(x + p∗3)

f3(x) =

{

β1(x − u3) + f3(u3), x ≥ u3,

k1e
r+(x−u3) + k2e

r−(x−u3), 0 ≤ x ≤ u3,
(4.61)

where u3 = u0 − p∗3 > 0 and p∗3 ∈ [x0, ξ
∗
2) is the unique solution to ϕ(p; ξ∗2) = 0 or, equivalently,

f3(η
∗
3) − f3(0) − β2η

∗
3 − K = 0 (4.62)

where η∗
3 := ξ∗2 − p∗3 > 0. Correspondingly, define a reinsurance policy

qπ∗

3 (x) = qπ∗

(x + p∗3) ≡ 1, x ≥ 0. (4.63)

Then, f3(x) and qπ∗

3 (x) satisfy (4.49)-(4.52) with ũ0 = u3. Figure 2(c) is a graph of v′(x) = f ′
3(x) in this case.

(4) If k3a
δ (θ1 − 1

2θ2) ≤ P < β1θ1a
δ , f ′(0) = k1r+ + k2r− > β2 and K < I(ξ∗3 ) hold, let f(x) and u0 be

defined by (4.39) and (4.42), respectively. Define a candidate solution f4(x) = f(x + p∗4)

f4(x) =

{

β1(x − u4) + f4(u4), x ≥ u4,

k1e
r+(x−u4) + k2e

r−(x−u4), 0 ≤ x ≤ u4,
(4.64)

where u4 = u0 − p∗4 and p∗4 ∈ (0, ξ∗3) is the unique solution of ϕ(p; ξ∗3) = 0 or, equivalently,

f4(η
∗
4) − f4(0) − β2η

∗
4 − K = 0 (4.65)

where η∗
4 := ξ∗3 − p∗4. Define a reinsurance policy by

qπ∗

4 (x) ≡ 1, x ≥ 0. (4.66)

Then, f4(x) and qπ∗

4 (x) solve (4.49)-(4.52) with ũ0 = u4. Figure 2(d) is a graph of f ′
4(x) in this case.

4.3. The value function and optimal strategy

Based on the analysis above, we identify the explicit solution to the value function and construct the
associated optimal strategy in this section. Before presenting the main results, we introduce a definition

Dπ∗

t (u) = (x − u)+ +

∫ t

0

I{Xπ∗

s ≥u}dDπ∗

s . (4.67)

Theorem 4.1. Under the assumption of (4.1), V (x) and π∗ can be obtained in the following 10 cases, which
exhaust all of the possibilities. In what follows, k3, I(ξ) and J(ξ∗2 ) are defined as (4.26), (4.34) and (4.36),
respectively.

Case 1: P < k3a
δ (θ1 − 1

2θ2) and β1 < f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz ≤ β2

In this case, let u0 and f(x) be given by (4.25) and (4.29), respectively. The value function V (x) coincides
with f(x). The surplus process controlled by the optimal strategy π∗ = (qπ∗

, Dπ∗

, Rπ∗

) satisfies that

{

Xπ∗

t = x +
∫ t

0

(

a(θ1 − (1 − qπ∗

(Xπ∗

s ))θ2)
)

ds +
∫ t

0 qπ∗

(Xπ∗

s )bdBs − Dπ∗

t ;

Xπ∗

t ≤ u0.
(4.68)

The optimal reinsurance policy qπ∗

is determined by (4.30). Dπ∗

is a barrier dividend strategy with switch
level u0, which is described by (4.67), where ui = u0 > 0. In this case, it is unprofitable to raise new money, so
Rπ∗

t ≡ 0.

Case 2: P < k3a
δ (θ1 − 1

2θ2), f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K ≥ I(ξ∗1)
The value function V (x) and associated optimal strategy π∗ take the same forms as those in Case 1.

Case 3: P < k3a
δ (θ1 − 1

2θ2), f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and K ≥ I(ξ∗2)
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Figure 2: The graph of the derivative v′(x) = f ′

i(x) with forced financing

(a)P <
k3a

δ
(θ1 −

1

2
θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and 0 < K < I(ξ∗1);

(b)P <
k3a

δ
(θ1 − 1

2
θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and J(ξ∗
2
) < K < I(ξ∗

2
);

(c) P < k3a
δ

(θ1 − 1

2
θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤ J(ξ∗
2
) < I(ξ∗

2
);

(d) k3a

δ
(θ1 − 1

2
θ2) ≤ P <

β1θ1a

δ
, f ′(0) = k1r+ + k2r− > β2 and 0 < K < I(ξ∗

3
).

The value function V (x) and associated optimal strategy π∗ take the same forms as those in Case 1.

Case 4: k3a
δ (θ1 − 1

2θ2) ≤ P < β1θ1a
δ and f ′(0) = k1r+ + k2r− ≤ β2

In this case, let f(x) and u0 be given by (4.39) and (4.42), respectively. The value function V (x) is consistent
with f(x). The controlled surplus process associated with optimal strategy π∗ = (qπ∗

, Dπ∗

, Rπ∗

) satisfies that

{

Xπ∗

t = x + θ1at + bBt − Dπ∗

t ;

Xπ∗

t ≤ u0.
(4.69)

The insurer should take full retention all the time; that is, qπ∗

t ≡ 1, the barrier dividend strategy Dπ∗

with
switch level u0 > 0 is optimal, which is described by (4.67), where u = u0. It is unprofitable to raise new money
all of the time, so Rπ∗

t ≡ 0.

Case 5: k3a
δ (θ1 − 1

2θ2) ≤ P < β1θ1a
δ , f ′(0) = k1r+ + k2r− > β2 and K ≥ I(ξ∗3)

The value function V (x) and π∗ take the same forms as those in Case 4.

Case 6: P ≥ β1θ1a
δ

The value function V (x) coincides with f(x) in (4.48). It is optimal to distribute all of the surplus x as
dividends and immediately claim the liquidation value at bankruptcy time. Mathematically, qπ∗ ≡ 0, Dπ∗

t ≡ x
and Rπ∗

t ≡ 0.

Case 7: P < k3a
δ (θ1 − 1

2θ2), f
′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ∗1)
Let u0 be given by (4.25) and u1 = u0 − p∗1 in this case. Then, the value function V (x) is identical to f1(x)

in (4.53). The surplus controlled by the optimal strategy π∗ = (qπ∗

1 , Dπ∗

, Rπ∗

) satisfies that

{

Xπ∗

t = x +
∫ t

0

(

a(θ1 − (1 − qπ∗

1 (Xπ∗

s ))θ2)
)

ds +
∫ t

0 qπ∗

1 (Xπ∗

s )bdBs − Dπ∗

t +
∑∞

n=1 I{τπ∗

n ≤t}η
π∗

n ;

0 ≤ Xπ∗

t ≤ u1.
(4.70)
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The optimal reinsurance policy qπ∗

1 is characterised by (4.54). The barrier dividend strategy Dπ∗

with level u1

is optimal, which is described by (4.67), where u = u1. It is profitable to raise new money when and only when
the surplus is null, and the surplus immediately jumps to η∗

1 = ξ∗1 − p∗1 once it reaches 0 by issuing equities.
Thus, Rπ∗

is characterised by










∫ ∞

0
I{t:Xπ∗

t >0}dRπ∗

t = 0,

τπ∗

1 = inf{t ≥ 0 : Xπ∗

t− = 0},
τπ∗

n = inf{t > τπ∗

n−1 : Xπ∗

t− = 0}, n = 2, 3, · · · ,

(4.71)

and

ηπ∗

n ≡ η∗
1 = ξ∗1 − p∗1, n = 1, 2, · · · . (4.72)

Case 8: P < k3a
δ (θ1 − 1

2θ2), f
′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and J(ξ∗2) < K < I(ξ∗2 )
Let u0 be given by (4.25) and u2 = u0 − p∗2 in this case. The value function V (x) is identical to f2(x) in

(4.58). The surplus process is controlled by the optimal strategy π∗ = (qπ∗

2 , Dπ∗

, Rπ∗

) satisfies that
{

Xπ∗

t = x +
∫ t

0

(

a(θ1 − (1 − qπ∗

2 (Xπ∗

s ))θ2)
)

ds +
∫ t

0
qπ∗

2 (Xπ∗

s )bdBs − Dπ∗

t +
∑∞

n=1 I{τπ∗

n ≤t}η
π∗

n ;

0 ≤ Xπ∗

t ≤ u2.
(4.73)

The optimal reinsurance strategy qπ∗

2 is given by (4.60). The barrier dividend strategy Dπ∗

with level u2 is
optimal, which is described by (4.67), where u = u2. It is profitable to raise new money when and only when
the surplus is zero, and the surplus immediately jumps to η∗

2 = ξ∗2 − p∗2 once it reaches 0 by issuing equities.
Mathematically, Rπ∗

can be characterised by (4.71) and

ηπ∗

n ≡ η∗
2 = ξ∗2 − p∗2, n = 1, 2, · · · . (4.74)

Case 9: P < k3a
δ (θ1 − 1

2θ2), f
′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤ J(ξ∗2 ) < I(ξ∗2)
Let u0 be given by (4.25) and u3 = u0 − p∗3 in this case. Then, V (x) is identical to f3(x), as given by (4.61).

The surplus process is controlled by the optimal strategy π∗ = (qπ∗

3 , Dπ∗

, Rπ∗

) satisfies that
{

Xπ∗

t = x + θ1at + bBt − Dπ∗

t +
∑∞

n=1 I{τπ∗

n ≤t}η
π∗

n ;

0 ≤ Xπ∗

t ≤ u3.
(4.75)

The optimal reinsurance policy is qπ∗

3 (x) ≡ 1. The barrier dividend strategy Dπ∗

with switch level u3 is optimal,
which is described by (4.67), where u = u3. It is profitable to raise new money when and only when the surplus
is null, and the surplus immediately jumps to η∗

3 = ξ∗2 − p∗3 once it reaches 0 by issuing equities; that is, Rπ∗

can be characterised by (4.71) and

ηπ∗

n ≡ η∗
3 = ξ∗2 − p∗3, n = 1, 2, · · · . (4.76)

Case 10: k3a
δ (θ1 − 1

2θ2) ≤ P < β1θ1a
δ , f ′(0) = k1r+ + k2r− > β2 and 0 < K < I(ξ3)

Let u0 be given by (4.42) and u4 = u0−p∗4 in this case. Then, V (x) coincides with f4(x), as given by (4.64).
The controlled surplus process associated with optimal strategy π∗ = (qπ∗

4 , Dπ∗

, Rπ∗

) satisfies that
{

Xπ∗

t = x + θ1at + bBt − Dπ∗

t +
∑∞

n=1 I{τπ∗

n ≤t}η
π∗

n ;

0 ≤ Xπ∗

t ≤ u4.
(4.77)

The optimal reinsurance policy is qπ∗

4 ≡ 1. The barrier dividend strategy Dπ∗

with switch level u4 is optimal,
as described by(4.67), where u = u4. It is profitable to raise new money when and only when the surplus is
null, and the surplus immediately jumps to η∗

4 = ξ∗3 − p∗4 once it reaches 0 by issuing equities; that is, Rπ∗

can
be characterised by (4.71) and

ηπ∗

n ≡ η∗
4 = ξ∗3 − p∗4, n = 1, 2, · · · . (4.78)

Proof. We check that the function V (x) given in the 10 cases above is increasing, concave and twice continuously
differentiable, and that the derivative V ′(x) is bounded. Substituting V (x) in (3.1) and (3.2), we prove that
V (x) solves HJB equations. By applying Theorem 3.1, we establish that V (x) and π∗ are solutions to Problem
2.1. We only provide the detailed proof of Case 7 in Appendix C as an example, even though the method is
applicable to other cases. Hence, we have successfully obtained the solution to Problem 2.1.
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Remark 4.2. Observing Figures 1 and 2, we also draw several conclusions regarding the effects of the cost
factors and liquidation value on optimal strategies.

(1) As Figure 1 shows, no financing is optimal when either the proportional factor β2 or the fixed cost fac-
tor K is too large, i.e., when β2 ≥ f ′(0) or K ≥ I(ξ∗i ). In Figures 1(a)-(c), the dividend barrier u0 and the
initial ceded proportion 1 − qπ∗

(0) are increasing with respect to β1 if P ≥ 0. The opposite is true if P < 0.
In addition, both u0 and 1 − qπ∗

(0) are decreasing in P , which means that the insurer would take higher risks
with larger P and would purchase no reinsurance once the liquidation value P exceeded k3a

δ (θ1 − 1
2θ2). See

Figures 1(d)-(f). When the liquidation value P is greater than β1θ1a
δ , it is optimal for the insurer to declare

bankruptcy and claim the liquidation value immediately. Note that β1θ1a
δ is the present value of a perpetuity

with a discount rate of δ and an income rate of β1θ1a, which is the expected after-tax profit rate under the full
retention strategy. See risk model (2.5), where qs = 1, and Figure 1(f).

(2) As Figure 2 shows, the dividend barrier ui, the amount of financing η∗
i and the initial ceded propor-

tion 1 − qπ∗

i (0) are all increasing with respect to K. The interpretation is as follows. When the fixed cost K
increases, the manager should reserve more money and buy more reinsurance to protect against financial risk.
He/she should also try to reduce the frequency of raising money from equity markets by enhancing the amount
of η∗

i . The manager may consider financing only when both the conditions β2 < f ′(0) and K < I(ξ∗i ) hold. The
insurer does not purchase any reinsurance once the liquidation value P exceeds k3a

δ (θ1 − 1
2θ2).

5. The case of θ2 ∈ [θ1 +
√

θ2
1 + 2δ

(

b

a

)2
, ∞)

In this section, we address the case

θ2 ≥ θ1 +

√

θ2
1 + 2δ

( b

a

)2

. (5.1)

As in Section 4, we consider two sub-optimal problems, each corresponding to different boundary conditions.
In particular, the proofs resemble those in Section 4, so we present the main results in this section but omit
most of the proofs and interpretations.

5.1. The case without financing

As in the previous section, we start with the boundary conditions v(0) = P and C v(0) − v(0) ≤ 0. In this
case the solution g(x) for v(x) should satisfy that

max
0≤q≤1

{A qg(x)} = 0, 0 < x < d0, (5.2)

β1 − g′(x) = 0, x ≥ d0, (5.3)

g(0) = P, (5.4)

C g(0) − g(0) ≤ 0, (5.5)

with some parameter d0 ≥ 0. Under condition (5.1), we conjecture that it is always optimal to buy no rein-
surance; that is, q(x) ≡ 1 for all x ≥ 0. Then, by solving (5.2) and (5.3) with q ≡ 1, we obtain an increasing,
concave and twice continuously differentiable solution

g(x) =

{

β1(x − d0) + g(d0), x ≥ d0,

l1e
r+x + l2e

r−x, 0 ≤ x ≤ d0.
(5.6)

Using the principle of smooth fit at d0, the constants l1 and l2 can be obtained by solving

l1 =
β1r−

r+(r− − r+)
e−r+d0 > 0, (5.7)

l2 =
β1r+

r−(r+ − r−)
e−r−d0 < 0. (5.8)

The boundary condition (5.4) leads to the equation satisfied by d0

β1r−
r+(r− − r+)

e−r+d0 +
β1r+

r−(r+ − r−)
e−r−d0 = P. (5.9)
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For the same reason as given for (4.42), there exists a unique solution d0 > 0 to (5.9) if and only if P < β1θ1a
δ .

Here, d0 is also a decreasing function of P . To prove that q(x) ≡ 1 is optimal, given (4.6), it suffices to prove
that

G(x) :=
−θ2ag′(x)

b2g′′(x)
=

θ2a

b2
· −r−e−r+(d0−x) + r+e−r−(d0−x)

r+r−
(

e−r+(d0−x) − e−r−(d0−x)
) ≥ 1 (5.10)

for all x ∈ [0, d0]. Applying

θ2 ≥ θ1 +

√

θ2
1 + 2δ

( b

a

)2
=

−b2

a
r− and r+r− =

−2δ

b2
,

we derive

G(0) =
θ2a

b2
· −r−e−r+d0 + r+e−r−d0

r+r−
(

e−r+d0 − e−r−d0
) ≥ 2δe−r−d0 + (br−)2e−r+d0

2δe−r−d0 − 2δe−r+d0
> 1 (5.11)

and

G′(x) =
−θ2a(r+ − r−)2

b2(r+r−)3
(

e−r+(d0−x) − e−r−(d0−x)
)2 · e−(r++r−)(d0−x) > 0. (5.12)

Thus, (5.10) is established by (5.11) and (5.12).
It is not difficult to see that g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

> β1 for d0 > 0. We check inequality

(5.5) in two different cases.

(1) In the case where β1 < g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

≤ β2, it has g′(x) ≤ β2, as g′(x) is de-

creasing on [0,∞). Thus, C g(0) − g(0) = −K < 0, and (5.5) follows.

(2) In the case where g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

> β2, there exists a unique number ς∗ ∈ (0, d0) such

that g′(ς∗) = β2, i.e.,

β1r−
r− − r+

er+(ς∗−d0) +
β−r+

r+ − r−
er−(ς∗−d0) = β2. (5.13)

Define the integral

H(ς∗) :=

∫ ς∗

0

(g′(x) − β2)dx = g(ς∗) − g(0) − β2ς
∗, (5.14)

where g(x) is defined by (5.6) and is decreasing with respect to β2. Then, (5.5) holds if and only if

K ≥ H(ς∗). (5.15)

The opposite case is treated in the next subsection.

If P ≥ β1θ1a
δ , there is no positive solution to (5.9) and the solution to (5.2)-(5.5) takes the following form

g(x) = β1x + P, x ≥ 0. (5.16)

The associated optimal strategy is to distribute all of the surplus as dividends and claim the liquidation value
immediately.

5.2. The case with forced financing

In the case P < β1θ1a
δ and 0 < K < H(ς∗), there is no suitable solution to (5.2)-(5.5). This means that it

is optimal to raise new capital once the surplus is zero, and bankruptcy is forbidden forever. In this case, the
solution g(x) to HJB equations (3.1) and (3.2) should satisfy

max
0≤q≤1

{A qg(x)} = 0, 0 < x < d̃0, (5.17)

β1 − g′(x) = 0, x ≥ d̃0, (5.18)

C g(0) − g(0) = 0, (5.19)

g(0) ≥ P, (5.20)
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with some parameter 0 ≤ d̃0 < ∞. Let g(x) be given by (5.6), then the solution for (5.17)-(5.20) is g1(x) =
g(x + ̺∗); that is,

g1(x) =

{

β1(x − d̃0) + g1(d̃0), x ≥ d̃0,

l1e
r+(x−d̃0) + l2e

r−(x−d̃0), 0 ≤ x ≤ d̃0,
(5.21)

where d̃0 = d0 − ̺∗ > 0 and ̺∗ ∈ (0, ς∗) is the unique solution such that

g(ς∗) − g(̺∗) − β2(ς
∗ − ̺∗) − K = 0. (5.22)

Correspondingly, qπ∗

(x) ≡ 1 is the optimal retention level.

5.3. The value function and optimal strategy

In this subsection, we identify the explicit solutions to the value function and construct the associated op-
timal strategies under condition (5.1).

Theorem 5.1. Under condition (5.1), V (x) and π∗ can be established in the following four cases, which
exhaust all of the possibilities. In what follows, d̃0 = d0 − ̺∗ and d0, ς∗, H(ς∗) and ̺∗ are defined by (5.9),
(5.13), (5.14) and (5.22), respectively.

Case 1: P < β1θ1a
δ and β1 < g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

≤ β2

The value function V (x) is identical to g(x) in (5.6). The optimal strategy π∗ = (qπ∗

, Dπ∗

, Rπ∗

) satisfies
that

{

Xπ∗

t = x + θ1at + bBt − Dπ∗

t ;

Xπ∗

t ≤ d0.
(5.23)

The optimal dividend strategy Dπ∗

is barrier style, which can be characterised by (4.67), where u = d0. More-
over, Rπ∗

t ≡ 0 and qπ∗

(x) ≡ 1 for all x ≥ 0.

Case 2: P < β1θ1a
δ , g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

> β2 and K ≥ H(ς∗)

The value function V (x) and associated optimal strategy π∗ take the same forms as those in Case 1.

Case 3: P ≥ β1θ1a
δ

The solutions to V (x) and π∗ are the same as those in Case 6 of Theorem 4.1.

Case 4: P < β1θ1a
δ , g′(0) = β1

r+−r−

(

r+e−r−d0 − r−e−r+d0
)

> β2 and 0 < K < H(ς∗)

The value function V (x) takes the same form as g1(x) in (5.21). The optimal strategy π∗ = (qπ∗

, Dπ∗

, Rπ∗

)
satisfies that

{

Xπ∗

t = x + θ1at + bBt − Dπ∗

t +
∑∞

n=1 I{τπ∗

n ≤t}η
π∗

n ;

0 ≤ Xπ∗

t ≤ d̃0.
(5.24)

The optimal reinsurance policy is qπ∗

(x) ≡ 1. The optimal dividend strategy Dπ∗

is the barrier style with level
d̃0 = d0 − ̺∗ > 0, which is described by (4.67), where u = d̃0. It is profitable to finance when and only when
the surplus is zero, and the surplus immediately jumps to ς̃∗ = ς∗ − ̺∗ once it reaches 0 by issuing equities.
Mathematically, Rπ∗

is characterised by (4.71) and

ηπ∗

n ≡ ς̃∗ = ς∗ − ̺∗, n = 1, 2, · · · . (5.25)

Proof. The conclusions can be proven as in Theorem 4.1, thus the details are omitted here.

Remark 5.1. (1) If the cost of reinsurance is relatively high, i.e., (5.1) holds, then the manager does not
consider reinsurance. Consequently, Problem 2.1 is simplified to an ordinary optimal dividend and financing
control problem. Theorem 5.1 provides the solutions in four cases that explore all of the possibilities.

When no issue of equity is optimal, as in Cases 1-3, the dividend barrier d0 is increasing with respect to
β1 in the case of P ≥ 0;, and decreasing in the case of P < 0. In addition, when P increases on the interval
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(−∞, β1θ1a
δ ), the dividend barrier d0 gradually decreases. These results come from the property of (5.9). The

insurance company declares bankruptcy immediately once the liquidation value P exceeds β1θ1a
δ .

No bankruptcy is optimal if and only if the costs for financing are relative low, i.e., β2 < g′(0) and K < H(ς∗).
See Case 4. The dividend barrier d̃0 and the amount of financing ς̃∗ are both increasing with respect to K.

(2) If we let θ2 → θ1 in the model, the reinsurance reduces to the “cheap” style, then the transaction cost
of the reinsurance contract vanishes. Thus, the company can keep the surplus non-negative forever by taking
q ≡ 1, i.e., transferring all the business to the reinsurer. If the company never declares bankruptcy to claim a
negative liquidation value, then the optimisation problem with P < 0 does not make sense. See, for example,
Taksar (2000b), Xu and Zhou (2012), Yao et al. (2014), etc. Obviously, the assumption of “non-cheap” rein-
surance seems more reasonable.

(3) From the results of Theorems 4.1 and 5.1, we know that the strategies without financing are optimal
when at least one of the two cost factors K and β2 is large enough, which corresponds to the cases studied in
Liang and Young (2012). Similarly, the optimisation problem studied in Peng et al. (2012) can be viewed as a
special case in this paper when P → −∞. The verification processes are left to the interested readers.

6. Conclusion

To maximise an insurance company’s value, we consider a combined optimal financing-reinsurance-dividend
distribution problem. To reflect reality, the liquidation value at bankruptcy and the transaction costs incurred
in the control processes are included in the risk model. We use the stochastic control method to solve the
optimisation problem and obtain some interesting results. The insurer should take all risks if the reinsurance is
too expensive, and likewise should not choose financing if the costs are too high. The insurer does not distribute
dividends until the surplus exceeds some level, and the excess is paid out immediately as dividends. When the
liquidation value is too large, it is optimal to distribute all surplus as dividends and claim the liquidation
value immediately. The value function can be expressed in terms of retention function qπ∗

(x), which is an
increasing function of surplus x ≥ 0. The initial (minimal) retention level qπ∗

(0) ∈ (ρ, 1] is an increasing
function of liquidation value P . Due to reinsurance contract costs, the insurer’s admissible retention must be
larger than the lowest level ρ whenever the reinsurance is taken. In summary, the optimal strategies depend on
the relationships among the parameters. The main contribution of this paper is that we take both financing
and bankruptcy into account and investigate the effects of liquidation value P on optimal strategies, for P ∈ R.
Compared with the work of Liang and Young (2012) and Peng et al. (2012), the risk models and associated
results herein are extended and the techniques are different.

Appendix
Appendix A. The proof of Theorem 3.1

Proof. For each given strategy π = (qπ, Dπ, Rπ) ∈ Π, define Λπ
D = {s : Dπ

s− 6= Dπ
s }, Λπ

R = {s : Rπ
s− 6= Rπ

s } =

{τπ
1 , τπ

2 , · · · , τπ
n , · · · }. Let D̂π

t =
∑

s∈Λπ
D

,s≤t

(Dπ
s − Dπ

s−) be the discontinuous part of Dπ
t and D̃π

t = Dπ
t − D̂π

t

be the continuous part of Dπ
t . Similarly, R̂π

t and R̃π
t stand for the discontinuous and continuous parts of Rπ

t ,
respectively. Then, applying Itô’s formula, we derive that

e−δ(t∧T π)v(Xπ
t∧T π ) − v(x)

=

∫ t∧T π

0

e−δs
A

qπ

v(Xπ
s )ds +

∫ t∧T π

0

bqπ
s dBs −

∫ t∧T π

0

e−δsv′(Xπ
s )dD̃π

s

+

∫ t∧T π

0

e−δsv′(Xπ
s )dR̃π

s +
∑

s∈Λπ
R
∪Λπ

D
,s≤t∧T π

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

. (A.1)
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The last term on the right side can be written as
∑

s∈Λπ
R
∪Λπ

D
,s≤t∧T π

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

=
∑

s∈Λπ
D

,s≤t∧T π

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

+
∑

s∈Λπ
R

,s≤t∧T π

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

≤ −
∑

s∈Λπ
D

,s≤t∧T π

e−δsβ1(D
π
s − Dπ

s−) +
∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤t∧T π}, (A.2)

where the inequality is because v(x) satisfies the HJB equation (3.1) with v′(x) ≥ β1 and C v(x) ≤ v(x).
Moreover, given (3.1), the first term on the right side of (A.1) is non-positive. Hence, substituting (A.2) into
(A.1), we obtain

e−δ(t∧T π)v(Xπ
t∧T π) ≤ v(x) +

∫ t∧T π

0

e−δsbqπ
s v′(Xπ

s )dBs

−β1

∫ t∧T π

0

e−δsdDπ
s +

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤t∧T π}. (A.3)

Given that v(x) is an increasing function and v(0) ≥ P , we have

e−δ(t∧T π)P ≤ v(x) +

∫ t∧T π

0

e−δsbqπ
s v′(Xπ

s )dBs

−β1

∫ t∧T π

0

e−δsdDπ
s +

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤t∧T π}. (A.4)

The stochastic integral with respect to the Brownian motion in (A.4) is a uniformly integratable martingale if
v′(x) is bounded. Taking expectation and limit on both sides of (A.4) yields

v(x) ≥ Ex

(

β1

∫ T π

0

e−δsdDπ
s + Pe−δT π −

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤T π}

)

= V (x; π). (A.5)

Consequently, v(x) ≥ V (x) follows.

Appendix B. The proof of inequality (4.45)

Proof. In the case 2θ1 ≤ θ2 < θ1 +

√

θ2
1 + 2δ

(

b
a

)2
, direct computations show that the left side of (4.45) is

non-positive, so it holds automatically. Next, we focus on the opposite case θ1 < θ2 < 2θ1. Let us define a
function in θ2 as

Ψ(θ2) :=
b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

)

−r
−

r+−r
−

(θ1 −
1

2
θ2), θ2 ∈ [θ1, 2θ1). (B.1)

Then,

log Ψ(θ2) = log b2 − log(b2 +
θ2a

r+
) − r−

r+ − r−

(

log
(

b2 +
θ2a

r+

)

− log
(

b2 +
θ2a

r−

)

)

+ log
(

θ1 −
1

2
θ2

)

. (B.2)

Vieta’s theorem leads to

r+ + r− = −2δ

b2
, r+r− = −2θ1a

b2
. (B.3)

We deduce that

d

dθ2
log Ψ(θ2) =

a

(b2 + θ2a
r+

)(r− − r+)
+

a

(b2 + θ2a
r−

)(r+ − r−)
− 1

2(θ1 − 1
2θ2)

=
−a2θ2

r+r−(b2 + θ2a
r+

)(b2 + θ2a
r−

)
− 1

2(θ1 − 1
2θ2)

=
1

2δb2

θ2a2 + 2(θ1 − 1
2θ2)

− 1

2(θ1 − 1
2θ2)

< 0. (B.4)
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Thus, Ψ(θ2) is decreasing on the interval [θ1, 2θ1). With the help of b2 + θ1a
r+

> b2 + θ1a
r−

> 0 and 0 < −r−

r+−r−

< 1,

we derive

Ψ(θ2) ≤ Ψ(θ1) =
b2

b2 + θ1a
r+

(b2 + θ1a
r+

b2 + θ1a
r−

)

−r
−

r+−r
−

(θ1 −
1

2
θ1)

≤ b2

2(b2 + θ1a
r−

)
θ1 < θ1. (B.5)

The last inequality is confirmed by the definition of r−, and (4.45) is proved when θ1 < θ2 < 2θ1. In summary,

(4.45) holds for all θ2 ∈ (θ1, θ1 +

√

θ2
1 + 2δ

(

b
a

)2
).

Appendix C. The proof of Case 7 in Theorem 4.1

Proof. Suppose that P < k3a
δ (θ1 − 1

2θ2), f
′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ∗1 ). First, we verify that

f1(x) and qπ∗

1 satisfies HJB equations (3.1) and (3.2).

• Step 1: To show max0≤q≤1{A qf1(x)} ≤ 0 on [0,∞).
(i) If 0 ≤ x ≤ u1, by construction, f1(x) and qπ∗

1 (x) satisfy (4.49) with ũ0 = u1. That is, max0≤q≤1{A qf1(x)} =

A qπ∗

1 f1(x) = 0.
(ii) If x > u1, then f1(x) ≥ f1(u1), f ′

1(x) = f ′
1(u1) = β1 and f ′′

1 (x) = f ′′
1 (u1) = 0. So, for each q ∈ [0, 1], we

derive that

A
qf1(x) =

1

2
q2b2f ′′

1 (x) + (θ1 − (1 − q)θ2)af ′
1(x) − δf1(x)

=
1

2
q2b2f ′′

1 (u1) + (θ1 − (1 − q)θ2)af ′
1(u1) − δf1(x)

≤ 1

2
q2b2f ′′

1 (u1) + (θ1 − (1 − q)θ2)af ′
1(u1) − δf1(u1)

= A
qf1(u1) ≤ 0.

• Step 2: To show f ′
1(x) ≥ β1. It can be established directly from the expression of f1(x) in (4.53).

• Step 3: To show C f1(x) ≤ f1(x). We have

C f1(x) − f1(x) = max
y≥0

{f1(x + y) − β2y − K} − f1(x)

= max
y≥0

{

∫ x+y

x

(f ′
1(s) − β2)ds

}

− K.

(i) If 0 ≤ x ≤ η∗
1 , then f ′

1(x) − β2 ≥ 0 if and only if 0 ≤ x ≤ η∗
1 . Thus,

C f1(x) − f1(x) = max
y≥0

{

∫ x+y

x

(f ′
1(s) − β2)ds

}

− K

≤
∫ η∗

1

0

(f ′
1(s) − β2)ds − K = 0,

the equality holds if and only if x = 0 and y = η∗
1 .

(ii) If η∗
1 < x < ∞, the inequality f ′

1(x) − β2 < 0 is always true, then

C f1(x) − f1(x) = max
y≥0

{

∫ x+y

x

(f ′
1(s) − β2)ds

}

− K

= −K < 0.

• Step 4: Clearly, f1(x) = f(x + p∗) > P is true because f ′
1(x) ≥ β1 and f1(0) = f(p∗) > f(0) = P .

Thus, f1(x) satisfies (3.1) and (3.2). Clearly, f1(x) is a twice continuously differentiable with increasing
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and concave function, and its derivative satisfies β1 ≤ f ′
1(x) ≤ f ′

1(0) < ∞. Thus, f1(x) ≥ V (x) holds according
to Theorem 3.1. Finally, we verify the optimality of strategy π∗ = (qπ∗

1 , Dπ∗

, Rπ∗

) ∈ Π as described by (4.54),

(4.67), where u = u1, (4.71) and (4.72). Given that A qπ∗

1 f1(X
π∗

t ) = 0 for 0 ≤ Xπ∗

t ≤ u1, we have

∫ t∧T π∗

0

e−δs
A

qπ∗

1 f1(X
π∗

s )ds =

∫ t∧T π∗

0

e−δs
A

qπ∗

1 f1(X
π∗

s )I{0≤Xπ∗

s ≤u1}ds = 0. (C.1)

Furthermore, (4.67), (4.71) and (4.72) indicate that

∑

s∈Λπ∗

D
∪Λπ∗

R
,s≤t∧T π∗

e−δs
(

f1(X
π∗

s ) − f1(X
π∗

s−)
)

=
∑

s∈Λπ∗

D
,s≤t∧T π∗

e−δs
(

f1(X
π∗

s ) − f1(X
π∗

s−)
)

I{Xπ∗

s =u1} +
∑

s∈Λπ∗

R
,s≤t∧T π∗

e−δs
(

f1(X
π∗

s ) − f1(X
π∗

s−)
)

I{Xπ∗

s−
=0}

= −
∑

s∈Λπ∗

D
,s≤t∧T π∗

e−δsβ1(D
π∗

s − Dπ∗

s−) +

∞
∑

n=1

e−δτπ∗

n (β2η
π∗

n + K)I{τπ∗

n ≤t∧T π∗}. (C.2)

Replacing π, T π, v by π∗, T π∗

= ∞, f1 in Itô’s formula (A.1) and taking expectations, we have

f1(x) = Ex[e−δtf1(X
π∗

t )] + Ex

(

β1

∫ t

0

e−δsdDπ∗

s −
∞
∑

n=1

e−δτπ∗

n (β2η
π∗

n + K)I{τπ∗

n ≤t}

)

. (C.3)

Letting t → ∞, the first term on the right side vanishes, then we obtain

f1(x) = Ex

(

β1

∫ ∞

0

e−δsdDπ∗

s −
∞
∑

n=1

e−δτπ∗

n (β2η
π∗

n + K)I{τπ∗

n <∞}

)

= V (x; π∗), (C.4)

which, together with f1(x) ≥ V (x), establishes that f1(x) = V (x) = V (x; π∗).
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